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Abstract

The paper presents results of theoretical and experimental investigations of the convective heat transfer from iso-

thermal cuboid. The analytical solution was performed taking into account complete boundary layer length and the

manner of its propagation around isothermal cuboid. It arises at horizontal bottom surface and grows on vertical

lateral surface of the block. After changing its direction, the boundary layer occurs above horizontal surface faced up

and next it is transformed into buoyant convective plume. To verify obtained theoretical solution the experimental

study has been performed. The experiment was carried out for three possible positions of the same tested cuboid.

As the characteristic linear dimension in Nusselt–Rayleigh theoretical and experimental correlations we proposed

the ratio of six volumes to the cuboids surface area, for the analogy to the same ratio using as the characteristic di-

mension for the sphere, which is equal to the sphere�s diameter. It allowed performing the experimental results inde-

pendently from the orientation of the block. The Rayleigh numbers based on this characteristic length ranged from 105

to 107. The Nusselt number describing intensity of convective heat transfer from the cuboid can be expressed by:

Nu ¼ XRa1=5 þ YRa1=4, where X and Y are coefficients dependent on the cuboid�s dimensions. For the range of provided

experiment the experimental Nusselt–Rayleigh relation can be presented in the form:

Nu ¼ 1:61Ra1=5 or 0:807Ra1=4

with the good agreement with the theoretical one recalculated for the tested cuboid dimensions.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Free convective heat transfer, especially from bodies

or objects limited by cuboids surfaces, take place in

building engineering, central heating, electronics,

aeronautics, aquanauts, chemical apparatus, lighting

industry. In these branches cubes are very often used as

insulating, constructing or shielding surfaces.

The mechanism of heat transfer considered from all

surfaces of cuboid is more complicated then from flat

horizontal or vertical plates treated separately. The

boundary layer from downward faced bottom of the

cuboid has the significant influence on the formation of

boundary layer on vertical side and next on boundary

layer above horizontal top of the block. Up to now these

configurations of surfaces (horizontal flat plates facing

downward [1–4], horizontal flat plates facing upward [5–

11] and vertical plates [1,9,12]) have been studied theo-

retically and experimentally independently. In the case

of cuboids we found significantly fewer papers devoted

them. Culham et al. [13] proposed three analytical

models presented for determining laminar and forced

convection heat transfer from isothermal cuboids. It is a

convenient method for calculating an average Nusselt

number, base on cuboid dimensions, thermophysical

properties and the approach velocity. Cha and Cha [14]

presented the numerical and experimental investigations

results of 3D natural convection flows around two in-

teracting isothermal cubes. Yovanovich [15] compared

models of Chamberlain, Stretton and Clemes for cube

and cuboid and also Karagiosis and Saunders model for

vertical plate in microelectronic heat sink applications.

Meinders et al. [16] provided experiments of the local
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convective heat transfer from a wall-mounted single

array of cubical protrusions along a wall at a wind

tunnel. Nakamura et al. [17] presented the data about

the cooling design of electric equipment in the form of

cubes and square blocks. Culham and Yovanovich with

Lee [18] calculated the thermal performance of several

heat sinks using a flat plate boundary model, also for

isothermal cuboids with the square root of the surface

A1=2 as the characteristic length in the form:

Nu ffiffiAp ¼ 3:42þ 0:524Ra1=4ffiffi
A

p for cuboids with aspect

ratios length/width ¼ 1:1 and Nu ffiffiAp ¼ 3:89þ 0:594Ra1=4ffiffi
A

p

for cuboids with aspect ratios length/width ¼ 10:1.

This paper is focused on analytical solution of sim-

plified Navier–Stokes and Fourier–Kirchhoff equations,

described natural convective heat transfer from iso-

thermal cuboids immersed in fluid treated as unlimited

space.

Obtained for cuboids of different shapes (determined

by length, width and height) solution has been verified

experimentally. In the experimental study we tested the

same cuboid with dimensions 0:2 m � 0:1 m� 0:045 m

situated in three positions: vertical I, lateral II and

horizontal III. In this way the errors of measurements

were for all tested positions the same.

2. The theoretical considerations

According to the surface orientation to the gravita-

tional acceleration the cuboid was divided into three

regions correlated with the heat transfer direction (Fig.

1). Region 1 is the bottom of the cuboid and it is treated

as the sum of two rectangular horizontal and faced

down rectangles (1l) with the surface (ðb� aÞa=2) each
and eight horizontal down-faced triangles (1c) with the

surface (a2=8) each. Region 2 is composed of two ver-

tical rectangles (2l) with the surface (ðb� aÞc) each and

eight vertical rectangles (2c) with the surface (ac=2) each.
Region 3 is the rectangular horizontal plate facing up-

ward, created by two rectangles (3l) with the surface

(ðb� aÞa=2) each and eight triangles (3c) with the sur-

face (a2=8) each.
The mean heat transfer coefficient for the cuboid can

be obtained from the energy balance (Q ¼ Q1 þ Q2 þ Q3)

Nomenclature

a ¼ k
Cp

q thermal diffusivity (m2/s)

a width of the cuboid (m)

A control surface across the boundary layer

(m2)

b length of the cuboid (m)

c height of the cuboid (m)

C NuðRaÞ relation constant (–) (Eq. (33))

cp specific heat at constant pressure (J/(kgK))

dS control surface of heated surface (m2)

F surface of the cuboid (m2)

g acceleration due to gravity (m/s2)

i enthalpy (J/kg)

I electric current (A)

L characteristic length (m)

n NuðRaÞ relation exponent (–) (Eq. (33))

Nu ¼ aL
k Nusselt number (–)

Pr ¼ m=a Prandtl number (–)
_QQ heat flux (W)

Ra ¼ gbDTL3

ma Rayleight number (–)

T temperature (�C or K)

DT temperature difference (K)

U voltage (V)

V volume of the cube (m3)

w velocity of the fluid (m/s)

x0 the boundary layer length measured along

the streamlines in the bottom corner region

(m)

Greek symbols

a heat transfer coefficient (W/(m2 K))

b average volumetric thermal expansion coef-

ficient (1/K)

d	 dimensionless boundary layer thickness (–)

d boundary layer thickness (m)

df final thickness of dimensionless boundary

layer (m)

k thermal conductivity of the fluid (W/m
K)

m kinematic viscosity of the fluid (m2/s)

H dimensionless temperature defined by Eq.

(4)

Subscripts

1l region 1 lateral

1c region 1 corner

2l region 2 lateral

2c region 2 corner

3l region 3 lateral

3c region 3 corner

c convective

f final

n normal

r radiative

s tangential

w wall

1 bulk fluid
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by averaging heat transfer coefficients obtained for all

mentioned above regions and subregions:

a¼ðb�aÞaða1lþa3lÞþa2ða1cþa3cÞþ4aca2cþ2ðb�aÞca2l

2ðacþabþbcÞ
ð1Þ

Introducing the simplifying assumptions typical for

the natural convection and proposed physical model

such as:

– fluid is incompressible and its flow is laminar and

steady,

– the flow is predominantly parallel to the control sur-

face of heated wall, with the boundary layer develop

with the distance along the surface,

– physical properties of the fluid in the boundary layer

and in the undisturbed region are constant,

– temperature of the cuboid�s surface (Tw) is constant,
– inertia terms, viscous dissipation and internal heat

sources are neglected,

– conductive heat losses through suspension of the cu-

boid to the fluid is disregard in comparison with con-

vective one,

– thickness of thermal and hydraulic boundary layers

are the same

so the Navier–Stokes equations for the control space

inside the boundary layer may be written for any posi-

tions of heated surface in terms:

m
o2ws

on2
þ gbðTs � T1Þ sin/ � 1

q
op
os

¼ 0 ð2Þ

gbðTs � T1Þ cos/ � 1

q
op
on

¼ 0 ð3Þ

where (/) is an angle of inclination of considered sur-

face: (/ ¼ 0) for the horizontal and (/ ¼ p=2) for ver-

tical surface, (s) and (n) are the tangential and normal to

the fluid flow directions.

Instead of the direct form of the Fourier–Kirchhoff

equation it was decided, according to Squire and Eckert

[19,20], to make assumption that the temperature profile

in the boundary layer is described by:

H ¼ T � T1
Tw � T1

¼ 1
�

� n
d

�2
ð4Þ

The quasi-analytical solution of Eqs. (1)–(3), pre-

sented in Ref. [21] in the form of the local and mean

velocity in control space across the boundary layer are:

1cf

1cf

1lf

1l f

1lf

1lf

z

2cf

2lf

3l

3333c

2l

2l

2c

3l

y

x

1lf

w1

w2

w3

δ

δ δ

δ

δ

δ

δδ
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δ

δ

δ

δ

δ δ

Fig. 2. The boundary layer shapes and thickness in the defined

regions.
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2l
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2c
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3l

Q3

Q1

Q2

Fig. 1. The regions of the cuboid, correlated with the heat

transfer phenomenon: 1––horizontal faced-down, 2––vertical,

3––horizontal faced up and subregions: l––lateral, c––corner.
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ws ¼
gbDT

m
dd
ds

n4

12d2

��
� 2n5

60d3
� n2

6
þ 7dn

60

�
cos/

þ
�
� n2

2
þ n3

3d
� n4

12d2
þ dn

4

�
sin/

�
; ð5Þ

ws ¼
1

d

Z d

0

ws dy ¼
gbDTd2

m
dd
ds

cos/
72

�
þ sin/

40

�
ð6Þ

The change in mass flow intensity in control surface

across the boundary layer (A) is

dm ¼ dðAwsqÞ ð7Þ

The amount of the heat necessary to create this

change in mass flux is

dQ ¼ Didm ¼ qcpðT � T1ÞdðAwsÞ ð8Þ

Substitution of the mean value of the temperature

T � T1
	 


¼ 1

d

Z d

0

DT 1
�

� n
d

�2
dn ¼ DT

3
ð9Þ

gives

dQ ¼ qCpDT dðAwsÞ
3

ð10Þ

The heat flux described by Eq. (9) may be compared

to the heat flux determined by Newton�s Eq. (10):

dQ ¼ aDT dS ¼ �k
oH
on

� �
n¼0

DT dS; ð11Þ

where (dSÞ is the control surface of the heating surface.

From simplifying assumption of the temperature

profile inside the boundary layer (4), the dimensionless

temperature gradient on the heated surface may be

evaluated as:

a ¼ k
oH
on

� �
n¼0

¼ � 2k
d

ð12Þ

Comparing the heat flux emitted by the wall surface

with the heat flux transported by the fluid one can ob-

tain:

Fig. 3. Three sections of tested cuboids with boundary layers: A-A––longitudinal offset section, where the left section was made

through the corner subregions, the right section -through the lateral ones; B-B––cross-section through boundary layer below down

faced surface of the bottom with stream lines patterns; C-C––cross-section through boundary layer above up faced surface of the top of

the cuboid with stream lines patterns.
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1

6

qcpd
k

dðAwsÞ ¼ dS ð13Þ

2.1. Detailed solution for the region 1

The phenomenon in this region of the cuboid is well

known case of the convective heat transfer from down-

faced horizontal plate. For the case of rectangles (Fig. 3

the cross-section B-B) streamlines are parallel to each

other. The boundary layer arises from the axes of sym-

metry and diagonals of the surface. According to the

patterns of the stream lines shown on the dawn faced

horizontal rectangular plate view (Fig. 3 B-B), one can

distinguished two subregions: first, with two rectangles

(1l) and the second one, with eight triangles (1c). For the

first of them the control surface A has the same width

independently on the position along the boundary layer

on the plate. For the triangles (1c) the width of the

control surfaces A are the function of not only the

thickness of boundary layer (d) but also the distance

from the edges.

2.1.1. Bottom lateral side

For the rectangles the control surfaces can be defined

as (Fig. 3 B-B):

A1l ¼ ðb� aÞd1l and dS1l ¼ ðb� aÞdx ð14Þ

and from the mean velocity of the fluid flow along the

streamlines (6) is:

wx ¼
1

d1l

Z d1l

0

wx dy ¼
gbDTd2

1l

72m
dd1l

dx
ð15Þ

Substituting (14) and (15) into (13) one obtain

equation:

3d3
1l

dd1l

dx

� �2

þ d4
1l

d2d1l

dx2
¼

432 a
2

	 
3
Raa=2

ð16Þ

where

Raa=2 ¼
gbDT ða

2
Þ3

ma
ð17Þ

Eq. (16) has the solution in the form of boundary

layer thickness:

d1l ¼
4:478 a

2

	 
3=5
x2=5

Ra1=5a=2

ð18Þ

and next, according to the Eq. (12), one can calculate the

mean value of the heat transfer coefficient for this re-

gion:

a1l ¼
2

a

Z a=2

0

2k
d1l

dx ¼ 0:744k
Ra1=5a=2

a=2
ð19Þ

2.1.2. Bottom corner side

The streamlines below the defined above triangular

corner�s regions (1c) are directed perpendicularly to the

edges of the plate along the x or z-coordinate (Fig. 3 ‘‘B-

B’’). The velocity of the fluid wx and wz is described by

the same function due to symmetry of the phenomenon.

The control surfaces for these rectangular triangles

are defined as:

AIc ¼ zdIc and dS1c ¼ zdx ð20Þ

and the mean velocity value obtained from (6) is:

wx ¼
gbDTd2

Ic

72m
ddIc

dx
ð21Þ

Writing the Eq. (13) for this surfaces in the form:

1

6

qcpdIc

k
dðAIcwxÞ ¼ dSIc ð22Þ

and

1

432

Ra1=5a=2

a
2

	 
3 dIc

d

dx
dIc

ddIc

dx

� �
¼ 1 ð23Þ

one can find the solution:

d1c ¼
4:478 a

2

	 
3=5
x2=5

Ra1=5a=2

ð24Þ

In this subregion the fluid flow starts from the hy-

potenuse of each rectangular triangle and goes perpen-

dicularly to the edges so the length of boundary layer

along streamlines can be described by: (x0 ¼ ða=2Þ � x)
(Fig. 4) which changes from x0 ¼ a=2 for z ¼ 0 to x0 ¼ 0

for z ¼ a=2. Taking it into account in Eq. (24) one can

obtain the boundary layer thickness in the form:

d1c ¼
4:478 a

2

	 
3=5 a
2
� x

	 
2=5
Ra1=5a=2

ð25Þ

and next the mean heat transfer coefficient from this

regions:

a1c ¼
1

S

Z
S

2k
d1c

dS ¼ 16k
a2

Raa=21=5

4:478ða
2
Þ3=5

�
Z a=2

0

Z a=2

ða
2
�zÞ

a
2

�
� x
��2=5

dxdz ¼ 0:93k
Raa=21=5

a=2

ð26Þ

2.2. Solution for the region 2

The heat transfer in this region can be treated as the

well-known case of natural convection from isothermal

vertical surface. Instead of the typical vertical plates for

the cuboid the boundary layer thickness is not equal

zero at the bottom edge but is equal to the final
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boundary layers thickness from the previous subregion

(d1lf ) or (d1cf ) (see Figs. 2 and 3 A-A). Because the values

of final boundary layers thickness differs from each

other this was the reason why the region 2 has been

divided into two subregions: the vertical lateral (2l) and

corner (2c) one. For the first of them (2l) the initial

values of boundary layer thickness is constant (Eq. (18)

for x ¼ a=2) but for region (2c) it is the function of the

distance from the corner of the cuboid (Eq. (24)).

Both vertical lateral side (2l) and corner side (2c)

have the control surfaces defined as:

A2l ¼ yd2l and dS2l ¼ y dy ð27Þ

and the mean velocity value obtained from (6):

wy ¼
gbDTd2

2l

40m
ð28Þ

Comparing the heat flux emitted by the heated wall

with the heat flux transported by the fluid one can ob-

tain the equation:

1

240

Rac
c3

d2l

y
d

dy
ðyd3

2lÞ ¼ 1 ð29Þ

which solution gives the boundary layer thickness

d2l ¼
240c3

Rac

4

7
y

� �1=4

ð30Þ

2.2.1. The vertical lateral side

For estimating the mean heat transfer coefficient for

the subregion (2l) one should take the length of the

boundary layer as (cþ d1lf ) and then integrating borders

from ð�d1lfÞ to (c), where ðd1lf ) is the final thickness of

boundary layer from bottom in lateral region (18) for

(x ¼ a=2 ¼ const:), described by equation:

d1lf ¼
4:478 a

2

	 
3=5 a
2

	 
2=5
Ra1=5a=2

¼ 2:239a

Ra1=5a=2

ð31Þ

Introduction Eq. (30) into (12) leads to the local and

next the mean heat transfer coefficient from this sub-

region

a2l ¼
2k
c

Z c

�2:239a=Ra1=5
a=2

4

7

240c3

Rac

� ��1=4

y�1=4dy ð32Þ

and then

a2l ¼ 0:779k
Ra1=4c

c
1

2
4 þ 2:239a

Ra1=5a=2c

 !3=4
3
5 ð33Þ

2.2.2. The vertical corner region

For estimating the mean heat transfer coefficient

from the subregion (2c) one should take the length of

boundary layer as cþ d1lc and then integrating borders

from ð�d1cfÞ to (c), where (d1cf ) is the final thickness of

boundary layer from bottom in the corner region. Due

to the symmetry of the phenomenon (x ¼ z).
Accordingly to Eq. (25) for x ¼ a=2 and z0 ¼

ða=2Þ � z the final value of the boundary layer thickness

for this subregion is:

d1cfðzÞ ¼
4:478ða

2
� zÞ3=5ða

2
Þ2=5

Ra1=5a=2

ð34Þ

The mean heat transfer coefficient from the subre-

gions (2c) is described by the equation:

a2c ¼
1

a=2

Z a=2

0

1

c

Z c

�d1cf ðzÞ

2k

4
7

240c3
Rac

y
� �1=4 dy

2
64

3
75dz

¼ 0:779k
Ra1=4c

c
þ 0:984k

Ra1=4c

Ra3=20a=2

a3=4

c7=4
ð35Þ

2.3. Solution for the region 3

Region 3 is known case of the heat transfer from the

horizontal rectangular plate facing upward, for example

[22]. The stream lines are shown schematically on Fig. 3

(cross-section C-C). In this region the rectangular plate

should also be considered as the sum of two rectangles

and eight triangles and the heat transfer is now influ-

z

dS1c A1c

x
x’ x

a/2

0

Fig. 4. Enlarged fragment of the presented on Fig. 3 B-B the

bottom corner subregion (1c) with the explanation of fluid flow

model and control surfaces definitions.
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enced by boundary layer formed on the bottom and next

vertical sides of the cuboid. Integration of the heat

transfer coefficient has to take into account the final

boundary layer thickness d2lf and d2cf .

2.3.1. The upper lateral region

The heat transfer in this region is influenced by the

final boundary layer thickness from the lateral vertical

side (2lf). The boundary layer thickness obtained for

lateral top regions in the form [22]:

d3l ¼
4:478 a

2

	 
3=5
x2=5

Ra1=5a=2

ð36Þ

should be now integrated from (�d2lf ) to (a=2), where
final thickness of boundary layer ðd2lfÞ can be calculated

from (30) for ðy ¼ cþ d1lfÞ:

d2lf ¼ d2lðy ¼ cþ d1lfÞ

¼ 4

7

240c3

Rac

� �1=4

c

 
þ 2:239a

Ra1=5a=2

!1=4

ð37Þ

Then one can obtain the mean heat transfer coeffi-

cient:

a3l ¼
1

a=2

Z a=2

�d2lf

2k
d3l

dx

¼ 0:744k
Ra1=5a=2

a
2

1

8>>><
>>>:

þ
4
7

240c3

Rac
cþ 2:239a

Ra1=5
a=2

� �� �3=20
a
2

	 
3=5
9>>>=
>>>;

ð38Þ

2.3.2. The upper corner region

The final boundary layer thickness from (2cf) sub-

region is the function of coordinates (x) or (z), so for the

upper triangles the Eq. (37) should be transformed as

(34) to:

d2cf ¼ d2cðy ¼ cþ d1cfÞ

¼ 4

7

240c3

Rac

� �1=4

c

 
þ
4:478ða

2
� xÞ3=5ða

2
Þ2=5

Ra1=5a=2

!1=4

ð39Þ

and the mean value of the heat transfer coefficient for

the subregions (3c) can be described as:

a3c ¼
4

a2

Z a=2

�d2cf ðxÞ

Z a=2

�d2cf ðzÞ

2k
d3c

dx

 !
dz

¼ 0:744k
Ra1=5a=2

a=2
1

2
64 þ

4
7

240c3

Rac

� �3=20
a
2

	 
3=5 c

 
þ 1:477a

Ra1=5a=2

!3=20
3
75

ð40Þ

where the last integrating in (40) was replaced by the

mean value without considerable inaccuracy.

2.4. The Nusselt–Rayleigh relation for the isothermal

cuboid

Substituting (19), (26), (32), (34), (37) and (39) to the

Eq. (1) the mean heat transfer coefficient for the cube

can be estimated. Majority of the heat transfer analyses

are based on correlations Nusselt number versus Ray-

leigh number in the form:

Nu ¼ CRan ð41Þ

Nusselt and Rayleigh numbers are defined as:

NuL ¼
aL
k

and RaL ¼
gbDTL3

ma
ð42Þ

with L as the characteristic linear dimension.

On the base of our own and other investigators data

we have been considered the linear characteristic length

choice. We taken into account height of the cuboid (c),
the boundary layer length (aþ c), the square root of the
surface (

ffiffiffi
A

p
) and the length defined by:

L ¼ 6V
F

¼ 3abc
abþ acþ bc

ð43Þ

where V is the volume and F is cuboid�s surface,
Ultimately we have chosen the characteristic length

(43) and substituting:

Raa=2 ¼ RaL
abþ acþ bc

6bc

� �3

and

Rac ¼ RaL
abþ acþ bc

3ab

� �3

ð44Þ

the NuLðRaLÞ relation can be described in form:

NuL ¼ XRa1=5L þ YRa1=4L ð45Þ

where

X ¼ að6bcÞ2=5

4ðabþ acþ bcÞ7=5
2:976b

8<
: þ 0:372a

þ 1:488

a
2

	 
3=5 4

7

240c3

RaLðabþacþbc
3ab Þ3

" #3=20
ðb

2
4 � aÞ

� c

 
þ 2:239a

Ra1=5L
abþacþbc

6bc

	 
3=5
!3=20

þ a c

 
þ 1:477a

Ra1=5L
abþacþbc

6bc

	 
3=5
!3=20

3
5
9=
; ð46Þ
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and

Y ¼ cð3abÞ1=4

2ðabþ acþ bcÞ5=4
1:558ða
"

þ bÞ

þ
3:936a a

c

	 
3=4 þ 1:558ðb� aÞ 2:239 a
c

	 
3=4
Ra3=20L

abþacþbc
6bc

	 
9=20
#

ð47Þ

The Eq. (45) with coefficients (46) and (47) has the

universal form and does not depend on the cuboids

position––it makes allowance for the influence both the

horizontal and vertical sides of the block, which are

usually described separately with the exponents: 1/5 and

1/4 accordingly.

3. Experimental apparatus and procedure

Experiment was conducted in the air in a vessel with

the volume of 1.5 m3. The tested cuboid was made of

polished aluminium and had the dimensions: 0.2, 0.1,

and 0.045 m. It was hanged in the vessel with the use of

two nylon wires which was 0.5 mm thick in three posi-

tions of cuboid�s orientation: I-vertical-for height

c ¼ 0:2 m, II-lateral-for height c ¼ 0:1 m and III-hori-

zontal-for height c ¼ 0:045 m.

The electric heater (power transistors) was placed

inside the cuboid. Heat flux from the surface of the

block to surrounding test fluid was transferred mainly

by laminar convection and partially by radiation. Six

thermocouples were used to measure the surface tem-

perature, one on the each side of the cube. They were

soldered into holes of aluminium with the tips of about

0.001 m. Four thermocouples were used to measure the

bulk temperature (T1) of the fluid (air) at different levels

in the tank. The inaccuracy of the temperature mea-

surement did not exceed �0.1 K. Establishing of differ-

ent steady states was made by a cooling system located

at the top of the vessel. During the experimental runs the

surface temperatures of the cube, bulk temperature of

the fluid and the voltage (U ) and current of the heater

inside the cuboid (I) were measured. All these data were

recorded during established steady states. The time of

obtaining a thermal equilibrium and performing of ex-

perimental studies was about 6 h for one experimental

point.

4. Experimental results and analysis

In steady-state conditions the heat balance at the

exterior surface requires that the rate of heat gain is

equal to the rate of heat loss. This balance must be

maintained between the heat flux form inside the cuboid

and the convective and radiative losses from the external

surfaces to the air. The only source of heat flux form

inside the cube was the electric power of the heater.

Because thin nylon wires eliminated the solid metal

support of the cuboid, the heat losses by conduc-

tion through the support have not been taken into ac-

count.

A series of experimental runs in air according to the

apparatus described above was made in three configu-

rations of the cube. For every steady-state point the

temperature of the cuboid�s sides (Tw), the bulk fluid

(T1) and the electric power of the hater (UI) was saved
by computer system.

Then the Nu and Rayleigh numbers were estimated

as:

NuL ¼
aL
k
; RaL ¼

gbðTw � T1ÞL3

ma
ð48Þ

where a was calculated from the Newton�s law:

a ¼
_QQc

F ðTw � T1Þ ¼
UI � _QQr

F ðTw � T1Þ ð49Þ

and _QQr is the radiative heat flux from the cuboids sur-

face.

All measurements were counted out with the least

square method using three proposed characteristic

lengths. The first one was the height of the cuboid, what

is the equivalent of the characteristic linear dimension

used for the vertical plates. It gave the NuðRaÞ relation

(Fig. 5):
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100

5.104 1.106 1.107 4.107

Rac

Nuc

Nuc=0.26.Rac
1/3

+10%

-10%

Fig. 5. Experimental results in comparison with theoretical values for three positions of the tested cuboid: (�) position I, () position

II, (}) position III in the logarithmic scale with the height of the cuboid as the characteristic linear dimension.
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Nuc ¼ 0:26Ra1=3c ð50Þ

The second linear dimension was the length of the

boundary layer, equal the sum of the length and height

of the cuboid ða=2þ cþ a=2Þ. Then obtained criterial

relation was similar to (50) (Fig. 6):

Nuaþc ¼ 0:27Ra1=3aþc ð51Þ

Ultimately the characteristic length ðL ¼ 6V =F Þ (43)
turned out the most useful and allowed performing all

experimental result, apart from the position of the cu-

boid (Fig. 7). The obtained relation can be drawn in

form

NuL ¼ 1:596Ra1=5L or NuL ¼ 0:818Ra1=4L ð52Þ

For the tested cuboid the Nul (Ral) relations, obtained
from (45) with (46) and (47) are:

NuL ¼ 0:442Ra1=5L þ 0:585Ra1=4L ð53Þ

what is adequate to:

NuL ¼ 1:61Ra1=5L or NuL ¼ 0:807Ra1=4L ð54Þ

that agrees well with (52) within �1.35%.

5. Conclusions

The natural convection heat transfer in unlimited

space from isothermal cuboid has been theoretically and

experimentally investigated. Obtained correlation NuL
(RaL) allows calculating the convective heat transfer in-

tensity for the cuboids with any dimensions and positions

regarding the direction of gravity acceleration. The so-

lutions are in good agreement with experimental results

30
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Nua+c

Nua+c=0.27.Raa+c
1/3

+10%

-10%

Fig. 6. Experimental results in comparison with theoretical values for three positions of the tested cuboid: (�) position I, () position

II, (}) position III in the logarithmic scale with the sum of height and length of the cuboid as the characteristic linear dimension.
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Fig. 7. Experimental results in comparison with theoretical values for three positions of the tested cuboid: (�) position I, () position

II, (}) position III in the logarithmic scale with enlarged detail in non-logarithmic scale.
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presented in this paper and would be included into pre-

pare energy balance objects in the form of cuboid.
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